Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421099

ABSTRACT

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Subject(s)
Genome-Wide Association Study , Somatotypes , Animals , Trout/genetics , Genomics , Quantitative Trait Loci/genetics
2.
Science ; 383(6678): 27-28, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175891

ABSTRACT

Ecological model systems inform on innovative traits in plants and animals.


Subject(s)
Biological Evolution , Carnivorous Plant , Caryophyllales , Selection, Genetic , Snails , Animals , Phenotype , Snails/genetics , Carnivorous Plant/genetics , Caryophyllales/genetics , Multifactorial Inheritance
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220481, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38186274

ABSTRACT

As selection acts on multivariate phenotypes, the evolution of traits within populations not only depends on the genetic basis of each trait, but also on the genetic relationships among traits. As metabolic rate is often related to vital traits such as growth, physiology and behaviour, its variation and evolution is expected to have important repercussions on individual fitness. However, the majority of the correlations between metabolic rate and other traits has been based on phenotypic correlations, while genetic correlations, basis for indirect selection and evolution, have been overlooked. Using a case study, we explore the importance of properly estimating genetic correlations to understand and predict evolution of multivariate phenotypes. We show that selection on metabolic traits could result in indirect selection mainly on growth-related traits, owing to strong genetic correlations, but not on swimming or risk-taking and sociability behaviour even if they covary phenotypically. While phenotypic correlation can inform about genetic correlation direction, caution is needed in predicting the magnitude of genetic correlation. Therefore, even though phenotypic correlations among physiological and behavioural traits could be useful, deriving evolutionary conclusions based purely on them is not robust. In short, proper estimation of genetic correlations is needed when predicting evolutionary consequences. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Subject(s)
Swimming , Phenotype , Energy Metabolism/physiology
4.
Mol Ecol ; 33(5): e17278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38268086

ABSTRACT

Colour is an important visual cue that can correlate with sex, behaviour, life history or ecological strategies, and has evolved divergently and convergently across animal lineages. Its genetic basis in non-model organisms is rarely known, but such information is vital for determining the drivers and mechanisms of colour evolution. Leveraging genetic admixture in a rare contact zone between oviparous and viviparous common lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise morphologically indistinguishable reproductive modes differ in their ventral colouration (from pale to vibrant yellow) and intensity of melanic patterning. We find no association between female colouration and reproductive investment, and no evidence for selection on colour. Using a combination of genetic mapping and transcriptomic evidence, we identified two candidate genes associated with ventral colour differentiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metabolism and melanin synthesis respectively. Ventral melanic spots were associated with two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) genes. Using genome re-sequencing data, our results show that fixed coding mutations in the candidate genes cannot account for differences in colouration. Taken together, our findings show that the evolution of ventral colouration and its associations across common lizard lineages is variable. A potential genetic mechanism explaining the flexibility of ventral colouration may be that colouration in common lizards, but also across squamates, is predominantly driven by regulatory genetic variation.


Subject(s)
Lizards , Animals , Female , Lizards/metabolism , Color
5.
Evolution ; 78(4): 716-733, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38262697

ABSTRACT

Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.


Subject(s)
Gene Flow , Lizards , Humans , Animals , Phylogeny , Lizards/genetics , Phylogeography , South America , DNA, Mitochondrial/genetics , Genetic Variation
6.
J Fish Biol ; 104(3): 517-535, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984834

ABSTRACT

Determining how environmental conditions contribute to divergence among populations and drive speciation is fundamental to resolving mechanisms and understanding outcomes in evolutionary biology. Postglacial freshwater fish species in the Northern Hemisphere are ideal biological systems to explore the effects of environment on diversification in morphology, ecology, and genetics (ecomorph divergences) within lakes. To date, various environmental factors have been implicated in the presence of multiple ecomorphs within particular lakes or regions. However, concerted evidence for generalizable patterns in environmental variables associated with speciation across geographical regions and across species and genera has been lacking. Here, we aimed to identify key biotic and abiotic factors associated with ecological divergence of postglacial freshwater fish species into multiple sympatric ecomorphs, focusing on species in the well-studied, widespread, and co-distributed genera Gasterosteus, Salvelinus, and Coregonus (stickleback, charr, and whitefish, respectively). We found that the presence of multiple sympatric ecomorphs tended to be associated with increasing lake surface area, maximum depth, and nutrient availability. In addition, predation, competition, and prey availability were suggested to play a role in divergence into multiple ecomorphs, but the effects of biotic factors require further study. Although we identified several environmental factors correlated with the presence of multiple ecomorphs, there were substantial data gaps across species and regions. An improved understanding of these systems may provide insight into both generalizable environmental factors involved in speciation in other systems, and potential ecological and evolutionary responses of species complexes when these variables are altered by environmental change.


Subject(s)
Salmonidae , Smegmamorpha , Animals , Biological Evolution , Trout , Lakes , Genetic Speciation
7.
BMC Ecol Evol ; 23(1): 47, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667183

ABSTRACT

BACKGROUND: Animals select and interact with their environment in various ways, including to ensure their physiology is at its optimal capacity, access to prey is possible, and predators can be avoided. Often conflicting, the balance of choices made may vary depending on an individual's life-history and condition. The common lizard (Zootoca vivipara) has egg-laying and live-bearing lineages and displays a variety of dorsal patterns and colouration. How colouration and reproductive mode affect habitat selection decisions on the landscape is not known. In this study, we first tested if co-occurring male and female viviparous and oviparous common lizards differ in their microhabitat selection. Second, we tested if the dorsal colouration of an individual lizard matched its basking site choice within the microhabitat where it was encountered, which could be related to camouflage and crypsis. RESULTS: We found that site use differed from the habitat otherwise available, suggesting lizards actively choose the composition and structure of their microhabitat. Females were found in areas with more wood and less bare ground compared to males; we speculate that this may be for better camouflage and reducing predation risk during pregnancy, when females are less mobile. Microhabitat use also differed by parity mode: viviparous lizards were found in areas with more density of flowering plants, while oviparous lizards were found in areas that were wetter and had more moss. This may relate to differing habitat preferences of viviparous vs. oviparous for clutch lay sites. We found that an individual's dorsal colouration matched that of the substrate of its basking site. This could indicate that individuals may choose their basking site to optimise camouflage within microhabitat. Further, all individuals were found basking in areas close to cover, which we expect could be used to escape predation. CONCLUSIONS: Our study suggests that common lizards may actively choose their microhabitat and basking site, balancing physiological requirements, escape response and camouflage as a tactic for predator avoidance. This varies for parity modes, sexes, and dorsal colourations, suggesting that individual optimisation strategies are influenced by inter-individual variation within populations as well as determined by evolutionary differences associated with life history.


Subject(s)
Lizards , Reproduction , Animals , Female , Male , Biological Evolution , Ecosystem , Pigmentation
8.
Mol Ecol ; 32(12): 3060-3075, 2023 06.
Article in English | MEDLINE | ID: mdl-36872057

ABSTRACT

Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the carbonic anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.


Subject(s)
Biological Evolution , Vertebrates , Animals , RNA-Seq , Syndrome , Animal Distribution
9.
Mol Phylogenet Evol ; 182: 107734, 2023 05.
Article in English | MEDLINE | ID: mdl-36804428

ABSTRACT

Identifying cryptic species is important for the assessments of biodiversity. Further, untangling mechanisms underlying the origins of cryptic species can facilitate our understanding of evolutionary processes. Advancements in genomic approaches for non-model systems have offered unprecedented opportunities to investigate these areas. The White Cloud Mountain minnow (Tanichthys albonubes) is a popular freshwater pet fish worldwide but its wild populations in China are critically endangered. Recent research based on a few molecular markers suggested that this species in fact comprised seven cryptic species, of which six were previously unknown. Here, we tested six of these cryptic species and quantified genomic interspecific divergences between species in the T. albonubes complex by analyzing genome-wide restriction site-associated DNA sequencing (RADseq) data generated from 189 individuals sampled from seven populations (including an outgroup congeneric species, T. micagemmae). We found that six cryptic species previously suggested were well supported by RADseq data. The genetic diversity of each species in the T. albonubes complex was low compared with T. micagemmae and the contemporary effective population sizes (Ne) of each cryptic species were small. Phylogenetic analysis showed seven clades with high support values confirmed with Neighbor-Net trees. The pairwise divergences between species in T. albonubes complex were deep and the highly differentiated loci were evenly distributed across the genome. We proposed that the divergence level of T. albonubes complex is at a late stage of cryptic speciation and lacking gene flow. Our findings provide new insights into cryptic speciation and have important implications for conservation and species management of T. albonubes complex.


Subject(s)
Cyprinidae , Animals , Genome , Phylogeny , Multigene Family , Cyprinidae/genetics , Sequence Analysis, DNA , Fish Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903645

ABSTRACT

Fisheries induce one of the strongest anthropogenic selective pressures on natural populations, but the genetic effects of fishing remain unclear. Crucially, we lack knowledge of how capture-associated selection and its interaction with reductions in population density caused by fishing can potentially shift which genes are under selection. Using experimental fish reared at two densities and repeatedly harvested by simulated trawling, we show consistent phenotypic selection on growth, metabolism, and social behavior regardless of density. However, the specific genes under selection-mainly related to brain function and neurogenesis-varied with the population density. This interaction between direct fishing selection and density could fundamentally alter the genomic responses to harvest. The evolutionary consequences of fishing are therefore likely context dependent, possibly varying as exploited populations decline. These results highlight the need to consider environmental factors when predicting effects of human-induced selection and evolution.


Subject(s)
Fisheries , Life History Traits , Selection, Genetic , Aggression , Animals , Energy Metabolism/genetics , Female , Genetic Association Studies , Genome , Male , Phenotype , Population Density , Zebrafish
11.
Evol Appl ; 14(10): 2470-2489, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34745338

ABSTRACT

Identifying the molecular mechanisms facilitating adaptation to new environments is a key question in evolutionary biology, especially in the face of current rapid and human-induced changes. Translocations have become an important tool for species conservation, but the attendant small population sizes and new ecological pressures might affect phenotypic and genotypic variation and trajectories dramatically and in unknown ways. In Scotland, the European whitefish (Coregonus lavaretus) is native to only two lakes and vulnerable to extirpation. Six new refuge populations were established over the last 30 years as a conservation measure. In this study, we examined whether there is a predictable ecological and evolutionary response of these fishes to translocation. We found eco-morphological differences, as functional traits relating to body shape differed between source and refuge populations. Dual isotopic analyses suggested some ecological release, with the diets in refuge populations being more diverse than in source populations. Analyses of up to 9117 genome-mapped SNPs showed that refuge populations had reduced genetic diversity and elevated inbreeding and relatedness relative to source populations, though genomic differentiation was low (F ST = 0.002-0.030). We identified 14 genomic SNPs that showed shared signals of a selective response to translocations, including some located near or within genes involved in the immune system, nervous system and hepatic functions. Analysis of up to 120,897 epigenomic loci identified a component of consistent differential methylation between source and refuge populations. We found that epigenomic variation and genomic variation were associated with morphological variation, but we were not able to infer an effect of population age because the patterns were also linked with the methodology of the translocations. These results show that conservation-driven translocations affect evolutionary potential by impacting eco-morphological, genomic and epigenomic components of diversity, shedding light on acclimation and adaptation process in these contexts.

12.
Nat Ecol Evol ; 5(11): 1546-1556, 2021 11.
Article in English | MEDLINE | ID: mdl-34621056

ABSTRACT

All amniotes reproduce either by egg-laying (oviparity), which is ancestral to vertebrates or by live-bearing (viviparity), which has evolved many times independently. However, the genetic basis of these parity modes has never been resolved and, consequently, its convergence across evolutionary scales is currently unknown. Here, we leveraged natural hybridizations between oviparous and viviparous common lizards (Zootoca vivipara) to describe the functional genes and genetic architecture of parity mode and its key traits, eggshell and gestation length, and compared our findings across vertebrates. In these lizards, parity trait genes were associated with progesterone-binding functions and enriched for tissue remodelling and immune system pathways. Viviparity involved more genes and complex gene networks than did oviparity. Angiogenesis, vascular endothelial growth and adrenoreceptor pathways were enriched in the viviparous female reproductive tissue, while pathways for transforming growth factor were enriched in the oviparous. Natural selection on these parity mode genes was evident genome-wide. Our comparison to seven independent origins of viviparity in mammals, squamates and fish showed that genes active in pregnancy were related to immunity, tissue remodelling and blood vessel generation. Therefore, our results suggest that pre-established regulatory networks are repeatedly recruited for viviparity and that these are shared at deep evolutionary scales.


Subject(s)
Lizards , Animals , Female , Lizards/genetics , Oviparity , Reproduction , Snakes , Viviparity, Nonmammalian
13.
J Evol Biol ; 34(12): 1954-1969, 2021 12.
Article in English | MEDLINE | ID: mdl-34653264

ABSTRACT

Pleistocene glaciations dramatically affected species distribution in regions that were impacted by ice cover and subsequent postglacial range expansion impacted contemporary biodiversity in complex ways. The European whitefish, Coregonus lavaretus, is a widely distributed salmonid fish species on mainland Europe, but in Britain it has only seven native populations, all of which are found on the western extremes of the island. The origins and colonization routes of the species into Britain are unknown but likely contributed to contemporary genetic patterns and regional uniqueness. Here, we used up to 25,751 genome-wide polymorphic loci to reconstruct the history and to discern the demographic and evolutionary forces underpinning divergence between British populations. Overall, we found lower genetic diversity in Scottish populations but high differentiation (FST  = 0.433-0.712) from the English/Welsh and other European populations. Differentiation was elevated genome-wide rather than in particular genomic regions. Demographic modelling supported a postglacial colonization into western Scotland from northern refugia and a separate colonization route for the English/Welsh populations from southern refugia, with these two groups having been separated for more than ca. 50 Ky. We found cyto-nuclear discordance at a European scale, with the Scottish populations clustering closely with Baltic population in the mtDNA analysis but not in the nuclear data, and with the Norwegian and Alpine populations displaying the same mtDNA haplotype but being distantly related in the nuclear tree. These findings suggest that neutral processes, primarily drift and regionally distinct pre-glacial evolutionary histories, are important drivers of genomic divergence in British populations of European whitefish. This sheds new light on the establishment of the native British freshwater fauna after the last glacial maximum.


Subject(s)
Genetic Variation , Salmonidae , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Haplotypes , Phylogeny , Salmonidae/genetics
14.
J Evol Biol ; 34(7): 1167-1176, 2021 07.
Article in English | MEDLINE | ID: mdl-34107111

ABSTRACT

It is of fundamental importance for the field of evolutionary biology to understand when and why major evolutionary transitions occur. Live-bearing young (viviparity) is a major evolutionary change and has evolved from egg-laying (oviparity) independently in many vertebrate lineages and most abundantly in lizards and snakes. Although contemporary viviparous squamate species generally occupy cold climatic regions across the globe, it is not known whether viviparity evolved as a response to cold climate in the first place. Here, we used available published time-calibrated squamate phylogenies and parity data on 3,498 taxa. We compared the accumulation of transitions from oviparity to viviparity relative to background diversification and a simulated binary trait. Extracting the date of each transition in the phylogenies and informed by 65 my of global palaeoclimatic data, we tested the nonexclusive hypotheses that viviparity evolved under the following: (a) cold, (b) long-term stable climatic conditions and (c) with background diversification rate. We show that stable and long-lasting cold climatic conditions are correlated with transitions to viviparity across squamates. This correlation of parity mode and palaeoclimate is mirrored by background diversification in squamates, and simulations of a binary trait also showed a similar association with palaeoclimate, meaning that trait evolution cannot be separated from squamate lineage diversification. We suggest that parity mode transitions depend on environmental and intrinsic effects and that background diversification rate may be a factor in trait diversification more generally.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Lizards/genetics , Oviparity , Phylogeny , Snakes
15.
Mol Phylogenet Evol ; 157: 107063, 2021 04.
Article in English | MEDLINE | ID: mdl-33387650

ABSTRACT

The salamander genus Salamandra is widespread across Europe, North Africa, and the Near East and is renowned for its conspicuous and polymorphic colouration and diversity of reproductive modes. The phylogenetic relationships within the genus, and especially in the highly polymorphic species S. salamandra, have been very challenging to elucidate, leaving its real evolutionary history and classification at species and subspecies levels a topic of debate and contention. However, the distribution of diversity and species delimitation within the genus are critically important for identifying evolutionarily significant units for conservation and management, especially in light of threats posed by the pathogenic chytrid fungus Batrachochytrium salamandrivorans that is causing massive declines of S. salamandra populations in central Europe. Here, we conducted a phylogenomic analysis from across the taxonomic and geographic breadth of the genus Salamandra in its entire range. Bayesian, maximum likelihood and network-based phylogenetic analyses of up to 4905 ddRADseq-loci (294,300 nucleotides of sequence) supported the distinctiveness of all currently recognised species (Salamandra algira, S. atra, S. corsica, S. infraimmaculata, S. lanzai, and S. salamandra), and all five species for which we have multiple exemplars were confirmed as monophyletic. Within S. salamandra, two main clades can be distinguished: one clade with the Apenninic subspecies S. s. gigliolii nested within the Iberian S. s. bernardezi/fastuosa; and a second clade comprising all other Iberian, Central and East European subspecies. Our analyses revealed that some of the currently recognized subspecies of S. salamandra are paraphyletic and may require taxonomic revision, with the Central- and Eastern-European subspecies all being poorly differentiated at the analysed genomic markers. Salamandra s. longirostris - sometimes considered a separate species - was nested within S. salamandra, consistent with its subspecies status. The relationships identified within and between Salamandra species provide valuable context for future systematic and biogeographic studies, and help elucidate critical evolutionary units for conservation and taxonomy.


Subject(s)
Phylogeny , Urodela/classification , Urodela/genetics , Animals , Bayes Theorem , Biodiversity , Genotype , Geography , Principal Component Analysis , Species Specificity
16.
Mol Ecol ; 30(20): 4955-4969, 2021 10.
Article in English | MEDLINE | ID: mdl-33502030

ABSTRACT

Understanding the contribution of different molecular processes to evolution and development is crucial for identifying the mechanisms of adaptation. Here, we used RNA-sequencing data to test the importance of alternative splicing and differential gene expression in a case of parallel adaptive evolution, the replicated postglacial divergence of the salmonid fish Arctic charr (Salvelinus alpinus) into sympatric benthic and pelagic ecotypes across multiple independent lakes. We found that genes differentially spliced between ecotypes were mostly not differentially expressed (<6% overlap) and were involved in different biological processes. Differentially spliced genes were primarily enriched for muscle development and functioning, while differentially expressed genes were involved in metabolism, immunity and growth. Furthermore, alternative splicing and gene expression were mostly controlled by independent cis-regulatory quantitative trait loci (<3.4% overlap). Cis-regulatory regions were associated with the parallel divergence in splicing (16.5% of intron clusters) and expression (6.7%-10.1% of differentially expressed genes), indicating shared regulatory variation across ecotype pairs. Contrary to theoretical expectation, we found that differentially spliced genes tended to be highly central in regulatory networks ("hub genes") and were annotated to significantly more gene ontology terms compared to nondifferentially spliced genes, consistent with a higher level of pleiotropy. Together, our results suggest that the concerted regulation of alternative splicing and differential gene expression through different regulatory regions leads to the divergence of complementary processes important for local adaptation. This provides novel insights into the importance of contrasting but putatively complementary molecular processes in rapid parallel adaptive evolution.


Subject(s)
Alternative Splicing , Salmonidae , Alternative Splicing/genetics , Animals , Ecotype , Gene Expression , Salmonidae/genetics , Sympatry
17.
J Evol Biol ; 34(6): 893-909, 2021 06.
Article in English | MEDLINE | ID: mdl-33185292

ABSTRACT

During evolution, genomes are shaped by a plethora of forces that can leave characteristic signatures. A common goal when studying diverging populations is to detect the signatures of selective sweeps, which can be rather difficult in complex demographic scenarios, such as under secondary contact. Moreover, the detection of selective sweeps, especially in whole-genome data, often relies heavily on a narrow set of summary statistics that are affected by a multitude of factors, frequently leading to false positives and false negatives. Simulating genomic regions makes it possible to control these demographic and population genetic factors. We used simulations of large genomic regions to determine how different secondary contact and sympatric speciation scenarios affect the footprint of hard and soft selective sweeps in the presence of varying degrees of gene flow and recombination. We explored the ability of an array of population genetic summary statistics to detect the footprints of these selective sweeps under specific demographies. We focussed on metrics that do not require phased data or ancestral sequences and therefore have wide applicability. We found that a newly developed beta diversity measure, B¯GD utperformed all other metrics in detecting selective sweeps and that FST also performed well. High accuracy was also found in Δπ and genotype distance-derived metrics. The performance of most metrics strongly depended on factors such as the presence of an allopatric phase, migration rates, recombination, population growth, and whether the sweep was hard or soft. We provide suggestions for locating and analysing the response to selective sweeps in whole-genome data.


Subject(s)
Genetic Speciation , Genetics, Population/methods , Genomics/methods , Models, Genetic , Selection, Genetic , Statistics as Topic
18.
Mol Phylogenet Evol ; 153: 106950, 2020 12.
Article in English | MEDLINE | ID: mdl-32889137

ABSTRACT

Cryptic species describe two or more species that had mistakenly been considered to be a single species, a phenomenon that has been found throughout the tree of life. Recognizing cryptic species is key to estimating the real biodiversity of the world and understanding evolutionary processes. Molecular methods present an unprecedented opportunity for biologists to question whether morphologically similar populations are actually cryptic species. The minnow Tanichthys albonubes is a critically endangered freshwater fish and was classified as a second-class state-protected animal in China. Previous studies have revealed highly divergent lineages with similar morphological characters in this species. Herein, we tested for cryptic species across the ranges of all known wild populations of this minnow. Using multilocus molecular (one mitochondrial gene, two nuclear genes and 13 microsatellite loci) and morphological data for 230 individuals from eight populations, we found deep genetic divergence among these populations with subtle morphological disparity. Morphological examination found variance among these populations in the number of branched anal-fin rays. Based on genetic data, we inferred eight monophyletic groups that were well supported by haplotype network and population clustering analyses. Species delimitation methods suggested eight putative species in the T. albonubes complex. Molecular dating suggested that these cryptic species diverged in the period from the Pliocene to the Pleistocene. Based on these findings, we propose the existence of seven cryptic species in the T. albonubes complex. Our results highlight the need for a taxonomic revision of Tanichthys. What is more, the conservation status of and conservation strategies for the T. albonubes complex should be reassessed as soon as possible.


Subject(s)
Cyprinidae/classification , Genetic Speciation , Phylogeny , Animals , China , Conservation of Natural Resources , Cyprinidae/genetics , Genes, Mitochondrial/genetics , Microsatellite Repeats/genetics , Species Specificity
19.
Genome Biol Evol ; 12(11): 1953-1960, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32835354

ABSTRACT

Squamate reptiles exhibit high variation in their phenotypic traits and geographical distributions and are therefore fascinating taxa for evolutionary and ecological research. However, genomic resources are very limited for this group of species, consequently inhibiting research efforts. To address this gap, we assembled a high-quality genome of the common lizard, Zootoca vivipara (Lacertidae), using a combination of high coverage Illumina (shotgun and mate-pair) and PacBio sequencing data, coupled with RNAseq data and genetic linkage map generation. The 1.46-Gb genome assembly has a scaffold N50 of 11.52 Mb with N50 contig size of 220.4 kb and only 2.96% gaps. A BUSCO analysis indicates that 97.7% of the single-copy Tetrapoda orthologs were recovered in the assembly. In total, 19,829 gene models were annotated to the genome using a combination of ab initio and homology-based methods. To improve the chromosome-level assembly, we generated a high-density linkage map from wild-caught families and developed a novel analytical pipeline to accommodate multiple paternity and unknown father genotypes. We successfully anchored and oriented almost 90% of the genome on 19 linkage groups. This annotated and oriented chromosome-level reference genome represents a valuable resource to facilitate evolutionary studies in squamate reptiles.


Subject(s)
Chromosomes , Genome , Lizards/genetics , Sex Determination Processes , Viviparity, Nonmammalian/genetics , Animals , Female , Male
20.
PLoS Genet ; 16(4): e1008658, 2020 04.
Article in English | MEDLINE | ID: mdl-32302300

ABSTRACT

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.


Subject(s)
Ecotype , Evolution, Molecular , Fishes/anatomy & histology , Fishes/genetics , Gene Expression , Genetic Variation , Genome/genetics , Animals , Ecology , Female , Genetic Drift , Genetic Speciation , Genetics, Population , Genomics , Male , Sympatry
SELECTION OF CITATIONS
SEARCH DETAIL
...